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Background
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Variable Natural Gas Fuel Properties Impacts Vehicle Emissions



4

RNG could have even higher variability in NG quality 

Needs cost
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RNG May Not Need Complete Cleanup if NG Sensor 

Could Tune the Engine

Raw 
Biogas

Water
Removal

Impurity
(sulfide, 
siloxane)

CO2
Removal

Compress Gas 
grid

Chiller/ 
Dryer

Adsorption
/ Filtration

water wash
Scrubber
PSA
Membrane
cryogenic

compressor

~0.5 0.45~1.86 2.13 ~ 
4.58

~1Cost for 
$/mcf

Source : www.rosrocaenvirotec.com &
Economic and Financial Aspects of Landfill Gas to Energy Project, CEC report

http://www.rosrocaenvirotec.com/
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On-Line NG Sensing Could Provide Optimized Control

 

Conventional Wobbe Index 
Analyzer

The key enabling technologies For 
VNGV& VNGA

(1) On-board, real-time prediction of key fuel 
properties (such as Methane Index and 
Inert gas composition)  

(2) Adaptive combustion control in the 
engine for a wide range of fuel variations. 

VNGA (Appliance)
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Predictive Sensor by Data Mining: 2015 Design Wobbe Index

New 
Area of interest
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http://www.continental-
corporation.com/www/pressportal_com_en/themes/press_releases/3_automotive_gro
up/powertrain/press_releases/pr_20110913_fuel_quality_sensor_en.html

Predictive Sensing by Data Mining is Not New

http://www.continental-corporation.com/www/pressportal_com_en/themes/press_releases/3_automotive_group/powertrain/press_releases/pr_20110913_fuel_quality_sensor_en.html


How Is It Done: Measure Physical Properties and Analyze for Trends
Thermal Conductivity :  Property of a material to conduct heat
Very easy to measure by hot filament.

Gases TC, mW/mK @ RT

H2 131.7

CO2 9.6

CH4 22.5

C2H6 11

N2 18.7

Hot wire TC 
sensor (right) and 
housing (left)

Simultaneous 
Measuring T and 
TC from TC 
sensor, US patent 
RE42876E



• Data mining 
– is a non-trivial process of identifying valid, novel, potentially useful, and 

ultimately understandable patterns both regularities and anomalies in 
data, and ultimately understanding the data. (i.e. extraction of meaning 
full information)

• Major techniques
– Statistical methods

• Regression analysis
• Multivariate analysis
• Many others

– Machine leaning methods (AI based)
• Artificial neural network
• Decision tree induction 
• Many others

– Pattern recognition
– Visualization

Data Mining



Regression Analysis

• Goal
– Find relationships between independent variables 

(exploratory/predictor) and dependent variables (target/predicted)
– Result: regression model, f(X, β) = Y’ ≈ Y where X: independent 

variables; Y’: predicted values; Y: target values; β: unknown 
parameters
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X Y
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f(X, β)f(X, β)



Types of Regression Analysis

• Simple regression: y=f(x)
– One dependent variable and one independent variable

• Multiple regression: y=f(x1, x2, ..., xn)
– One dependent variable and multiple independent variables that 

encompass linear and nonlinear

• Multivariate regression: y1, y2, ..., ym= f(x1, x2, ..., xn)
– Multiple dependent variables and multiple independent variables 

(typically in matrices of variables)
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Multivariate Analysis (MVA)

• Goal
– Analyze multiple dependent and independent variables at once 

to find relationships among variables.

• Four types of analysis from MVA
– Degree of relationship between variables
– Significant differences between group means
– Predicting membership in two or more groups from one or more 

variables
– Explaining underlying structure
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Multivariate Analysis Techniques

• Multiple regression
• Logistic regression
• Canonical correlation
• Factor analysis – data reduction

– Principal components analysis (PCA)

• Multivariate Analysis of Variance (MANOVA)
– Extension of Analysis of Variance (ANOVA)

• Discriminant function analysis (or classification)
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We use Techniques 
in this color.



Example: Regression Analysis and MVA
Variables Description

H_GPA High school GPA

M_SAT Math SAT score

V_SAT Verbal SAT score

Sci_GPA Science GPA

Univ_GPA Overall college GPA
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H_GPA M_SAT V_SAT Sci_GPA Univ_GPA

3.3 550 590 3.2 3.5

2.2 600 590 3.7 3.1

… … … … …

 Some Questions that can be answered
 If a student had a 2.2 GPA in high school, what is the best estimated his/her 

college GPA? Regression analysis
 What would you predict a student’s overall college GPA if he/she received a 600 

on the math and a 540 on the verbal portion of the SAT? Regression analysis
 If a student’s high school GPA is greater than 3.0, will the student receive the 

college GPA greater than 3.0? Regression analysis
 What are all the key factors that influence the college GPA? MVA
 What are all the key factors that influence the science and college GPA? MVA



Artificial Neural Network (ANN)
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 Artificial neuron consists of
 Input signals in a vector, X from environment (or other neurons)
 Weights in a vector, W that are connection strengths
 Activation function, f(net) determines the neuron’s output based on the net =

Σwixi and a thresh hold value θ.

 Artificial neuron is the basis for a Artificial Neural Network (ANN)
 Can be used for machine learning as well as multivariate analysis

Actual neuron

Net = Σwixi

Artificial neuron

f(net) = 𝟏𝟏
(𝟏𝟏+𝒆𝒆−𝝀𝝀𝒏𝒏𝒏𝒏𝒏𝒏)



Muti-layer Neural Networks with 
Backpropagation

• Goal: Given training data, find a 
set of weights that fit outputs of 
neural net to desired outputs.

• Mechanism:
– For each training example, 

feed forward for activation.
– Backpropagate the error to 

previous layers and adjust the 
weights slowly in direction that 
reduces error.

– Repeat this process until 
converged and return f(X, β).

• Applications:
Solved many complex real-world 
problems.
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Example: ANN
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*The weight vector converged after 
repeated training on the data set, 
about 500 iterations:

W500 = [-1.3, -1.1, 10.9]

f(net) = w1x1 + w2x2 + w3, where two 
discriminant functions gi and gj are 
the same (border), gi = gj

f(net) = -1.3x1 + -1.1x2 + 10.9
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Data Base Development

• 3 different NG
1. Fossil
2. Anerobic
3. Landfill

• TC, Sound 
Velocity, Cp and 
Cv by CHEMKIN 
transport model

• Wobbe Index by 
ASPEN equilibrium 
model

• Methane Index by 
H/C ratio and SAE 
922359 Eqn. 4

• Variable T and P
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Completion of UCRs Wobbe Index Sensor: 2015 

• Multiple Regression Analysis (Past)

• Multi-Variate Analysis with ANN

1. Wobbe Index, estimation function was developed for 7 variable.
2. Square some of error for 2346 sample point is 2460. ~1 per sample (~2% error)
3. Reducing the variable to 4 is ongoing

Developed the function
estimating Wobbe Index 
@5% error
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Current Progress



22

New Sensor Development Approach

• Plan
– Upgrade the NG Sensor for Methane Index
– Add Speed of Sound Measurement
– Enhance data analysis
– Expand test matrix and variable for vehicle use

• Evaluate
– Integrate sensor in a test laboratory for daily usage
– Integrate sensor in an engine and demonstrate benefit
– Work planned with Cummins Inc.
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Predictive Sensor by Data Mining

Area of interest



Ar, He = 1.6
N2, O2, H2 = 1.4
CO2 = 1.29
CH4  = 1.32
C2H6 = 1.22
C3H8 = 1.12

HC-SR04 Ultrasonic Range Finder

Measurable Physical Properties: Speed of Sound
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Current Progress: Sensor Layout
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Description Methane 
(mole %)

Ethane 
(mole 

%)

Propane 
(mole %)

I-butane 
(mole %)

CO2 (mole 
%)

MN

Rocky Mountain
pipeline

94.5 3.5 0.6 0.3 0.75 93.58

Peruvian LNG 88.3 10.5 0 0 0 84.11

Associated High
Ethane

83.65 10.75 2.7 0.2 0 74.51

Associated High
Propane

87.2 4.5 4.4 1.2 0 74.31

Low MN Gas 82.8 4.5 8.8 1.2 0 65.07

Methane 100 0 0 0 0 107.62

Sensor Data Build Gas Matrix
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Temp  
(° C)

Pres  
(bar)

Gas composition (pure 
and arbitrary mix)

Gas properties Wobbe 
Index
(MJ/m3)

Methane 
Number

1 2 3 4 … …. Therm
Cond. 
(W/(m.K))

Sound 
velocity
(m/s)

0 1
10 2
20 3
30 4
40 1
50 2

Sensor Data Build Properties Matrix
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