

Heavy-Duty Natural Gas Engine Gas Composition Sensor

Development, Demonstration and Testing of Advanced Ultra-Low Emission Natural Gas Engines in Port Yard Trucks

CEC PIER Grant #PIR-16-016

Kent Johnson and Chan Seung Park University of California, Riverside

February 21, 2018

Background

Variable Natural Gas Fuel Properties Impacts Vehicle Emissions

0.008

0.007 0.006

0.005 0.004

0.003

0

CNG1 CNG2 CNG3 CNG4 CNG5

CNG6 CNG7

0.002 0.001

Source: Masato Matsuki (Honda R&D Co.),'Study on Required CNG Qualities as an Automotive Fuel, as presented at ANGVA Conference, 28 November 2013

The influence of fuel composition on the combustion and emission characteristics of natural gas fueled engines

Renewable and Sustainable Energy Reviews 38 (2014) 64-78

4

RNG could have even higher variability in NG quality

Trash to Gas

Renewable natural gas (RNG), or biomethane, is derived from many abundant renewable sources, including decomposing organic waste in landfills, wastewater treatment, and agriculture. RNG can be used in any natural gas vehicle. Our commitment to investing in natural gas infrastructure offers a unique opportunity to use this fuel in our extensive fleet.

RNG May Not Need Complete Cleanup if NG Sensor Could Tune the Engine

Source : <u>www.rosrocaenvirotec.com</u> &

Economic and Financial Aspects of Landfill Gas to Energy Project, CEC report

On-Line NG Sensing Could Provide Optimized Control

VNGA (Appliance)

Conventional Wobbe Index Analyzer

The key enabling technologies For VNGV& VNGA

- (1) On-board, real-time prediction of key fuel properties (such as Methane Index and Inert gas composition)
- (2) Adaptive combustion control in the engine for a wide range of fuel variations.

Predictive Sensor by Data Mining: 2015 Design Wobbe Index

Article AT/ANALYTICAL/015–EN

Predictive emission monitoring systems The power of software analyzers

Predictive Sensing by Data Mining is Not New

Gregorio Ciarlo, Federico Callero and Maurizio Simonelli, ABB SpA, Italy, discuss the application of predictive emission monitoring systems in applications when fuel characteristics are variable or in a complex process plant

Measurement made easy

http://www.continental-

<u>corporation.com/www/pressportal_com_en/themes/press_releases/3_automotive_group/powertrain/press_releases/pr_20110913_fuel_quality_sensor_en.html</u>

Power and productivity for a better world[™]

UCR College of Engineering- Center for Environmental Research & Technology

C

How Is It Done: Measure Physical Properties and Analyze for Trends

Thermal Conductivity : Property of a material to conduct heat Very easy to measure by hot filament.

Data Mining

Data mining

 is a non-trivial process of identifying valid, novel, potentially useful, and ultimately understandable patterns both regularities and anomalies in data, and <u>ultimately understanding the data</u>. (i.e. extraction of meaning full information)

Major techniques

- Statistical methods
 - Regression analysis
 - <u>Multivariate analysis</u>
 - Many others
- Machine leaning methods (AI based)
 - Artificial neural network
 - Decision tree induction
 - Many others
- Pattern recognition
- Visualization

Regression Analysis

• Goal

- Find relationships between independent variables (exploratory/predictor) and dependent variables (target/predicted)
- Result: regression model, f(X, β) = Y' ≈ Y where X: independent variables; Y': predicted values; Y: target values; β: unknown parameters

Types of Regression Analysis

- Simple regression: y=f(x)
 - One dependent variable and one independent variable
- Multiple regression: $y=f(x_1, x_2, ..., x_n)$
 - One dependent variable and multiple independent variables that encompass linear and nonlinear
- Multivariate regression: $y_1, y_2, ..., y_m = f(x_1, x_2, ..., x_n)$
 - Multiple dependent variables and multiple independent variables (typically in matrices of variables)

Multivariate Analysis (MVA)

• Goal

 Analyze multiple dependent and independent variables at once to find relationships among variables.

• Four types of analysis from MVA

- Degree of relationship between variables
- Significant differences between group means
- Predicting membership in two or more groups from one or more variables
- Explaining underlying structure

Multivariate Analysis Techniques

- Multiple regression
- Logistic regression
- Canonical correlation
- Factor analysis data reduction
 - Principal components analysis (PCA)
- Multivariate Analysis of Variance (MANOVA)
 - Extension of Analysis of Variance (ANOVA)
- Discriminant function analysis (or classification)

We use Techniques in this color.

Example: Regression Analysis and MVA

H_GPA	M_SAT	V_SAT	Sci_GPA	Univ_GPA	Variables	Description
3.3	550	590	3.2	3.5	H_GPA	High school GPA
2.2	600	590	3.7	3.1	M_SAT	Math SAT score
					V_SAT	Verbal SAT score
					Sci_GPA	Science GPA
					Univ GPA	Overall college GPA

Some Questions that can be answered

- If a student had a 2.2 GPA in high school, what is the best estimated his/her college GPA? Regression analysis
- What would you predict a student's overall college GPA if he/she received a 600 on the math and a 540 on the verbal portion of the SAT? Regression analysis
- If a student's high school GPA is greater than 3.0, will the student receive the college GPA greater than 3.0? Regression analysis
- What are all the key factors that influence the college GPA? MVA
- What are all the key factors that influence the science and college GPA? MVA

Artificial Neural Network (ANN)

- Artificial neuron consists of
 - Input signals in a vector, **X** from environment (or other neurons)
 - Weights in a vector, W that are connection strengths
 - Activation function, f(net) determines the neuron's output based on the net = $\sum w_i x_i$ and a thresh hold value θ .
- Artificial neuron is the basis for a Artificial Neural Network (ANN)
 - Can be used for machine learning as well as multivariate analysis

Muti-layer Neural Networks with Backpropagation

 Goal: Given training data, find a set of weights that fit outputs of neural net to desired outputs.

• Mechanism:

- For each training example, feed forward for activation.
- Backpropagate the error to previous layers and adjust the weights slowly in direction that reduces error.
- Repeat this process until converged and return $f(X, \beta)$.

Applications: Solved many complex real-world problems.

Example: ANN

X ₁	X ₂	Output
1.0	1.0	1
9.4	6.4	-1
2.5	2.1	1
8.0	7.7	-1
0.5	2.2	1
7.9	8.4	-1
7.0	7.0	-1
2.8	0.8	1
1.2	3.0	1
7.8	6.1	-1

*The weight vector converged after repeated training on the data set, about 500 iterations:

W⁵⁰⁰ = [-1.3, -1.1, 10.9]

 $f(net) = w_1 x_1 + w_2 x_2 + w_3$, where two discriminant functions $\mathbf{g_i}$ and $\mathbf{g_j}$ are the same (border), $g_i = g_i$

 $f(net) = -1.3x_1 + -1.1x_2 + 10.9$

Data Base Development

x∎	🕅 📊 🏂 👘 👻 Copy of Wobbe Index database (1) - Excel ? 🗈 💶 🗆 🗙																		
FIL	FILE HOME INSERT PAGE LAYOUT FORMULAS DATA REVIEW VIEW Sign 7																		
A22	$\begin{array}{c c c c c c c c c c c c c c c c c c c $																		
	Δ	B	C	D	F	F (с н		1	к	1	м	N	0	P	0	R	s	
1				Blend	-		Gas		Inert	Т	hermal			Mole	Specific	Sound	Wobbe	Methane	e 🗌
2	dB	Temp	Pressu	%			%			С	Conduct	Ср	Cv	Density	Gravity	Velocity	Index	Index	
3	#	C	PSI	Fossil	Anerobic	Landfill	CH4	C2H6	CO2	1	W/(m.K)	J/(mol.K)	J/(mol.K)	L/mol	Kg/(m^3)	m/s	MJ/Nm3	MI	
4	1	-20	500	100	0	0	94	6.00	0		0.0274	35.13	26.82	13.50	0.5828	350.86	54.90	84.(5
5	2	-20	500	90	10	0	91.83	5.40	2.77		0.0270	35.07	26.76	14.05	0.6066	343.90	52.16	88.8	8
6	3	-20	500	80	20	0	89.66	4.80	5.54		0.0267	35.01	26.70	14.68	0.6305	336.48	49.53	93.2	2
7	4	-20	500	70	30	0	87.49	4.20	8.31		0.0263	34.95	26.64	15.24	0.6543	330.29	47.03	97.6	5
8	5	-20	500	60	40	0	85.32	3.60	11.08		0.0260	34.90	26.58	15.79	0.6782	324.43	44.62	102.0	ו
9	6	-20	500	50	50	0	83.15	3.00	13.85		0.0256	34.84	26.52	16.35	0.7020	318.88	42.32	106.4	4
10	7	-20	500	40	60	0	80.98	2.40	16.62		0.0253	34.78	26.46	16.90	0.7258	313.60	40.10	110.7	7
11	8	-20	500	30	70	0	78.81	1.80	19.39		0.0250	34.72	26.40	17.55	0.7497	307.78	37.97	115.0	
12	9	-20	500	20	80	0	76.64	1.20	22.16	_	0.0246	34.66	26.34	18.10	0.7735	303.00	35.91	119.2	
13	10	-20	500	10	90	0	74.47	0.60	24.93		0.0243	34.60	26.28	18.00	0.7974	298.44	33.92	123.3	
14	11	-20	500		100	10	71.52	0.00	27.7	-	0.0239	34.54	20.23	19.22	0.8212	294.08	32.00	127.3	1
16	12	-20	500	10	80	10	73.60	0.00	25.40		0.0238	34.54	20.23	18.40	0.8287	292.74	33.31	120.1	
17	14	-20	500	10	80	20	70 74	0.00	29.71		0.0241	34.55	26.29	19 57	0.8363	297.04	31.03	129.0	6
18	15	-20	500	20	70	10	75.86	1.20	22.94		0.0245	34.66	26.35	18.28	0.7811	301.54	35.38	120.1	1
19	16	-20	500	10	70	20	72.91	0.60	26.49		0.0240	34.61	26.30	19.02	0.8124	295.66	32.91	125.0	0
20	17	-20	500	0	70	30	69.96	0.00	30.04		0.0236	34.56	26.24	19.75	0.8438	290.11	30.55	129.	8
21	18	-20	500	30	60	10	78.03	1.80	20.17		0.0248	34.72	26.41	17.72	0.7572	306.25	37.42	115.9	<mark>9</mark> -
2110	2107	80	1000	50	0	50	79.25	3.00	17.75		0.0388	38.96	30.64	24.67	0.7397	397.41	38.80	111.1	2 -
2111	2108	80	1000	40	0	60	76.3	2.40	21.3		0.0381	38.88	30.57	25.71	0.7710	389.24	36.21	116.4	4
2112	2109	80	1000	30	0	70	73.35	1.80	24.85		0.0374	38.80	30.49	26.76	0.8024	381.56	33.73	121.4	4
2113	2110	80	1000	20	0	80	70.4	1.20	28.4		0.0367	38.72	30.41	27.81	0.8338	374.32	31.36	126.4	4
2114	2111	80	1000	10	0	90	67.45	0.60	31.95		0.0361	38.65	30.33	31.60	0.8651	351.13	29.08	131.3	2
2115	2112	80	1000	0	0	100	64.5	0.00	35.5		0.0354	38.57	30.26	32.75	0.8965	344.93	26.90	135.8	8
2116	2113	80	1500	100	0	0	94	6.00	0		0.0422	39.34	31.03	26.82	0.5828	466.77	54.10	84.5	5
2117	211/	Woł	1500	no l dex dat	ahase 10	(±)	01 92	5 /0	2 77		0.0417	20.26	20.04	20 20	0 6066	/57 51	51 20	000	
DEAD	,		Joe III			J	_		A)/ED A	CF - 7	72 661 6005		0 0104.433	E 340733	m p	II		- t - 10	004
READ		P							AVERA	IGE: /	72.6616895	5 COUNT: 1	8 SUM: 123	5.248722	i i i i i i i i i i i i i i i i i i i	· · · · · · · · · · · · · · · · · · ·		— + 100	5%

- 3 different NG
- 1. Fossil

•

•

•

- 2. Anerobic
- 3. Landfill
- TC, Sound Velocity, Cp and Cv by CHEMKIN transport model
- Wobbe Index by ASPEN equilibrium model
- Methane Index by H/C ratio and SAE 922359 Eqn. 4
 - Variable T and P

College of Engineering- Center for Environmental Research & Technology Completion of UCRs Wobbe Index Sensor: 2015

Multiple Regression Analysis (Past)

Developed the function estimating Wobbe Index @5% error

Multi-Variate Analysis with ANN

55

S S

40

- 1. Wobbe Index, estimation function was developed for 7 variable.
- 2. Square some of error for 2346 sample point is 2460. ~1 per sample (~2% error)
- 3. Reducing the variable to 4 is ongoing

Current Progress

New Sensor Development Approach

Plan

- Upgrade the NG Sensor for Methane Index
- Add Speed of Sound Measurement
- Enhance data analysis
- Expand test matrix and variable for vehicle use

Evaluate

- Integrate sensor in a test laboratory for daily usage
- Integrate sensor in an engine and demonstrate benefit
- Work planned with Cummins Inc.

Predictive Sensor by Data Mining

Measurable Physical Properties: Speed of Sound

Ar, He = 1.6 N2, O2, H2 = 1.4 CO2 = 1.29 CH4 = 1.32 C2H6 = 1.22 C3H8 = 1.12

- R = the <u>universal gas constant</u> = 8.314 J/mol K,
- T = the <u>absolute temperature</u>
- M = the molecular weight of the gas in kg/mol
- γ = the adiabatic constant, characteristic of the specific gas

HC-SR04 Ultrasonic Range Finder

Current Progress: Sensor Layout

Sensor Data Build Gas Matrix

Description	Methane (mole %)	Ethane (mole %)	Propane (mole %)	I-butane (mole %)	CO ₂ (mole %)	MN
Rocky Mountain pipeline	94.5	3.5	0.6	0.3	0.75	93.58
Peruvian LNG	88.3	10.5	0	0	0	84.11
Associated High Ethane	83.65	10.75	2.7	0.2	0	74.51
Associated High Propane	87.2	4.5	4.4	1.2	0	74.31
Low MN Gas	82.8	4.5	8.8	1.2	0	65.07
Methane	100	0	0	0	0	107.62

Sensor Data Build Properties Matrix

Temp (° C)	Pres (bar)	Gas composition (pure and arbitrary mix)						Gas prope	rties	Wobbe Index	Methane Number
		1	2	3	4			Therm Cond. (W/(m.K))	Sound velocity (m/s)	(MJ/m ³)	
0	1										
10	2										
20	3										
30	4										
40	1										
50	2										

UCR College of Engineering- Center for Environmental Research & Technology

ACKNOWLEDGEMENT

Funding Support: California Energy Commission (CEC)

Energy Innovation Small Grant (EISG)

Department of Transportation (DOT NCST)

